Technical Comments

Comments on "Nuclear-Powered Surface Effect Ship Design Problems"

ALEX N. Petroff*
University of Michigan, Ann Arbor, Mich.

WHEN an article about a new GEM or SES appears in print, it is a temptation to compare its performance with that of a machine of similar capability that was proposed long ago. In 1937 (before the trans-Atlantic flight of land planes was possible) J. C. Hunsaker² of the Massachusetts Institute of Technology described an airship filled with helium which would carry 200 passengers a distance of 3500 miles. Table 1 lists pertinent characteristics and performance. The last item in Table 1 is a measure of efficiency with respect to the load carrying capacity, aerodynamics, and propulsion.

In the light of recent improvements in structural materials and turbofan engines and with application of boundary-layer control, the case of the airship becomes even more promising than indicated in Table 1. If nuclear power is contemplated, considering the length of an airship of ± 1000 ft,

Table 1 Information regarding a helium-filled airship

Item	Symbol	Units	Airship (1937)	SES (1965)
Gross weight or lift	\overline{W}	lb	570,000	13,440,000
Pay load	W_p	lb	131,000	2,210,000
Horsepower cruise (0.667 hp rated) Cruising speed $W_p \times V_c$		mph	3,200 77	252,000 80
$\frac{\frac{W_p}{\sqrt{V_p}}}{\sqrt{W_p}} = \left(\frac{W_p}{W}\right) \left(\frac{L}{D}\right) (\eta_p)$			8.4	1.9

the weight of shielding material could be considerably reduced in comparison with shorter machines. This implies that large rigid airships as a means of economic mass transportation at speeds of 100 mph or higher warrant careful consideration and future studies.

References

¹ Montes de Oca, R. A. and Simpson, H. M., "Nuclear-powered surface effect ship design problems," J. Aircraft 2, 136–143 (1965).

Received July 26, 1965.

^{*} Professor of Aeronautical Engineering, I.T.A. Associate Fellow Member AIAA.

² Hunsaker, J. C. "The development of trans-Atlantic aircraft," Lilienthal Society for Aeronautical Research, Munich, Germany (October 12, 1937).